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Introduction

In this thesis we calculate the equivariant fundamental groupoid of several Co-

surfaces.

The non-equivariant fundamental groupoid of a topological space X, denoted by
I1(X), is a generalization of the fundamental group (X, z,) which is independent
of the base point z,. Its elements are path homotopy classes between any two points,
and composition is only defined when the first path ends at the starting point of the
second path.

Let C; denote the group of order 2. By a Cs-surface we mean a connected, closed
surface together with a continuous action of Cy. For example, there are five non-trivial
C,-tori, illustrated here as reflections at the blue set in R3:

- r e
@ @

Figure 1: Non-trivial Co-tori

The full classification of Cy-surfaces is due to Dugger [Dugl6].

The equivariant fundamental groupoid IIB of a Cs-surface B is a generalization of
the fundamental groupoid of the underlying surface i>B. It captures information
about the fixed set B2 and the Cy-action in general. It can be described via a



skeleton of it, which can be thought of as fixing a set of base points.

The equivariant fundamental groupoid is a Cy-homotopy invariant, in the sense that
the equivariant fundamental groupoids of Cy-homotopic Cy-spaces are equivalent. In
the non-equivariant setting, the fundamental groupoid classifies the closed surfaces.
This raises the question of how strong an invariant it is for the case of Cs-surfaces:
Question (1.36). Is a Cy-surface uniquely determined by its equivariant fundamental

groupoid and the fundamental groupoid of its underlying surface?

This thesis answers this question for the Cs-spheres and the Cs-tori:
Theorem (2.1, 2.2). Let B be a Cy-sphere or a Cay-torus. Then I1B determines

which one.

However, we show that in general the equivariant fundamental groupoid alone is
insufficient:
Theorem. The torus with its antipodal Cy-action and the Klein bottle with its unique

free Cy-action have equivalent equivariant fundamental groupoids.

Furthermore, this thesis presents general results regarding the equivariant funda-
mental groupoid of a Cy-surface:

Theorem (1.31). Let B be a Cs-surface with non-trivial action. Then I1B has the
following skeleton, where C' is the number of fixed circles and F' is the number of
fixed points:

m1(S1) w1 (Sh)
T T Tc Top Tot+F

SO\ S o

(itB) - m(ifB) m (it B v m(igB

\\\///

I'IB(z*,a:.)

Further, there is a short exact sequence

1 —— m(i:B) —— NB(x.,z,) —— C, > 1

Calculating the equivariant fundamental groupoid of a Cy-surface is difficult because

it is hard to find the group I1B(z,,z,). Nevertheless, we show the following:



Theorem (1.33). Let B be a Cy-surface with non-trivial action. The above short
ezact sequence is right split if and only if B has fized points or B = S? is the sphere

with the antipodal action.

The sequence is right split if and only if I[IB(z,, z,) is a semidirect product of the
form m1(iB) x, C2. This is due to a version of the splitting lemma for general
groups. This raises another question:

Question (1.37). Let X be a closed surface. Do all possible semidirect products of
the form m(X) %, Cy occur as I1B(z.,z.) of some Cs-surface B with i;B = X ?

This turns out to be true for both the Cy-spheres and the Cs-tori. In particular,
there is an intuitive bijection between the similarity classes of self-inverse 2 x 2

integer matrices and Cy-tori with fixed points (see Theorem 2.3).

The thesis is structured as follows. In Chapter 1 we define the equivariant fundamen-
tal groupoid for G-spaces where G is a finite group. We also sketch the classification
of closed surfaces, calculate their fundamental groups, state the classification of

orientable Cs-surfaces, and finally, prove the Theorem 1.31 and Theorem 1.33.

Chapter 2 determines the equivariant fundamental groupoid for all four Cy-spheres
and all six Cy-tori in detail, finding that the answers to the questions above is "yes"
in these cases. We also discuss the free Cy-action on the Klein bottle and show
that the equivariant fundamental groupoid of a Cy-surface does not determine the

underlying surface.

Finally, we determine the equivariant fundamental groupoid for the class of Co,-
surfaces denoted by T:¢". These are orientable Cp-surfaces where the action is best

described as a reflection along a plane in R3:

Figure 2: T [Dugl6, 5.1]

g,r?
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Chapter 1

Foundations

1.1 The equivariant fundamental groupoid

In this section we will start with the basic definitions needed to define the equivariant
fundamental groupoid for topological G-spaces with a finite group G. In the end of
this section we compute the fundamental groupoid of S'!, the circle with reflection
along a diameter, to introduce the process of calculating equivariant fundamental
groupoids of G-spaces and to establish colours and variable names used throughout
this thesis.

The reader is assumed to have some introductory course level knowledge about

topology, groups and categories.

By G we always denote a finite group.

Definition 1.1 (G-space, [Die87]). A G-space (X, ¢) is a topological space X
together with a left group action ¢: G x X — X which acts continuously, i.e. for all
g € G the map ¢(g,-): X — X is continuous.

When (X, ¢) is a G-space and g € G, we also denote the map ¢(g,-): X — X by g.
Since g is invertible, for all g € G this map is continuous and continuously invertible,

i.e. a homeomorphism from X to X.

We will focus on the case where G = () is the cyclic group of two elements. Then
the action of the non-identity element of Cy on X is an involution T on X, i.e. a
continuous map 7: X — X with 72 = id. So a C,-space can also be understood as

a topological space together with an involution 7. [Dugl6, Introduction].
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We will always denote the elements of C; by e, the identity element, and 7, the
non-identity element.

Definition 1.2 (G-map). Let (X, ¢1), (Xo,¢2) be two G-spaces. Then a G-map
from (X1, ¢1) to (X2, ¢2) is a continuous map f : X1 — X which commutes with
the action of g, i.e. f(d1(g,2)) = ¢2(g, f(z)), or with the usual short notation for
group actions f(gzx) = gf(x). G-maps are also called equivariant maps.
Definition 1.3 (G-homotopy). Let (X1, ¢1), (Xz, ¢2) be G-spaces, and let f,g: X, —
Xy be G-maps. Then a G-homotopy from f to g is a homotopy h: X; x [0,1] — X5
from f to g which is also a G-map from (X1 x[0, 1], ¢1 xid) to (Xa2, ¢2), or equivalently
such that for all t € [0,1] the map h(-,t) : X; — X5 is a G-map.

Remark 1.4. Let G be a finite group. One can consider G as a topological space
with the discrete topology, turning G into a topological group. Then all of our above
definitions are compatible with the general case of G being any topological group.
Remark 1.5. For any subgroup H in G, this concept turns G/H into a G-space
where the action is left multiplication.

[Die87, Example 1.4]
Definition 1.6 (Top.). Let Top, denote the category of G-spaces. Morphisms in

this category are G-maps and composition is composition of functions.

Let (X, ¢) be a G-space, H a finite group and ¢ : H — G a group homomorphism.
Then H acts on X continuously via ¢(¢(-),-): H x X — X, turning X into a
H-space (X, ¢(¢(+),-)). So ¢ defines a functor ¢* : Top; — Topy.

If H is a subgroup of G we write iy : H — G for the inclusion and then ¢} is called

the restriction functor. It restricts the action of the G-space to the subgroup.

For the trivial group with one element e every continuous map commutes with the

group action which is just the identity on any topological space. So Top, = Top.

Given a G-space B = (X, ¢), this leads to the common notation of i!B = X to
denote the underlying topological space of a G-Space B. Here i, is the inclusion
ie: {€} = G. [BLM*24]

By B we will always denote a G-space.

We are ready to define the equivariant fundamental groupoid of a G-space B. First
we give the full definition of the equivariant fundamental groupoid and then we give
intuition about its meaning afterwards. The order of composition of functions is as
usual and the concatenation of homotopies (*) is in the same order as composition

of functions. By I we denote the unit interval [0, 1] with trivial G-action.
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Definition 1.7 (Equivariant fundamental groupoid [Die87| ). The equivariant
fundamental groupoid of a G-space B is the category I1B with

e objects being G-maps x: G/H — B, where H is any subgroup of G

e morphisms from z: G/H — B to y: G/K — B being pairs (o, [w]) where
a: G/H - G/K is a G-map, w: G/H x I — B is a G-homotopy from z to

yoa, and [w] is the homotopy class of G-homotopies from x to y o a relative

G/H x {0,1}.

o composition given by (az, [wa])o (a1, [wy]) = (azoay, [we(a; X id;)*xw;]), where

wi(gH, 2t) t €0, ,_%]

wy(ay Xidy)*xw,: G/HXI — B, (gH,t) —
w2(a1(gH)72t - 1) te (%7 1]

Remark 1.8 (Objects in IIB). Let z: G/H — B be an object of IIB. Since
z is a G-map we get for all g € G that z(gH) = z(g-eH) = g-z(eH). So
x is completely determined by its value at eH. Further, if ¢ € H it follows
z(eH) = 2(gH) = g - z(eH). So z(eH) € B¥, the H-fixed points of B. Therefore
such an object  in B can be thought of as a point in B together with its orbit.
Remark 1.9 (Morphisms in II1B). Let z: G/H — B and y: G/K — B be objects
in II1B and («, [w]) a morphism from z to y. Note that for all ¢ € [0,1] we have
that w(-,t): G/H — B is a G-map. Therefore, for every g € G we have that
w(gH,-): [0,1] — B is a path in B from z(gH) = gz(eH) to (y o a)(gH) =
g(y o a)(eH). Therefore similarly to the objects, such a morphism (e, [w]) can be
thought of as a homotopy class of paths from z(eH) to (y(a(eH)) in B¥ together
with its images under the group action. The meaning of « here is to choose to which
of the points in the image of y these paths go, whereas [w] gives their path homotopy
classes in BH.

Remark 1.10 (Composition of morphisms in I1B). Let z: G/H — B,y: G/K — B
and z: G/L — B objects in IIB, (ay, [w;]) € IB(z,y) and (ay, [ws]) € I1B(y, 2)
morphisms. Let (a, [w]) = (ag, [ws]) o (a1, [w1]) with w as in the definition of
composition. With the intuition on objects and morphisms of IIB as points and
paths together with their images under the group action, the composition of two
morphisms should represent the composition of these paths. We focus on the
composite path starting at z(eH), as by the previous remark this already determines
w. The first path here is wy(eH,-) from z(eH) to y(ai(eH)). Note that in general
ai(eH) # eK, so we can not compose the first path with wy(eK,-) but have to
choose wy(a(eH),-) from y(ay(eH)) to z(az(ay(eH))) as second path. Comparing
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with the definition of composition we find that this is exactly what happens:

'LUl(eH, 2t) te [0, %]

w(eH,t) =
wy(ay(eH), 2t —1) te (3,1]

Composition is well defined in the same way as composition of path-homotopy classes

are well defined in a (not equivariant) fundamental groupoid.

There is no clear way on how to write down a specific equivariant fundamental
groupoid, as in general B has infinitely many points and therefore IIB infinitely
many objects. So in calculation we try to determine a skeleton of IIB instead, which
can be thought of as the smallest equivalent category.

Definition 1.11 (Skeleton). Let C' be a category. A subcategory D of C is called

skeleton of C' if it is equivalent to C' and any two isomorphic objects of D are equal.

Let’s have a look at examples.

Example 1.12 (IIS*! (Example 2.10 in [BLM*24]). ) Let S*! denote the Cs-space
with underlying space i} S*! = S* and involution 7: S* — S*, (z,y) — (—=z,y), which
is mirroring S* on the vertical axis. Then let z. € IIS"! of the form Cy/e — S!
with z,(e) = (1,0) and therefore z,(7) = (—1,0). Then any other z € IIS*! of the
form Cy/e — S! is isomorphic to z,, since S! is path connected and we can find a
path from z,(e) to z(e), defining a morphism (e, [w]) from z, to z, which is inverted
by the morphism defined by the reverse path. This means that in a skeleton of I1S%!

we only have one object of this form, and we choose z. for that.

Further, we have that the fixed set of the involution is (S)“* = {(0,1), (0,—1)},
consisting of two points. For each we get an object of a skeleton of IIS"!, namely
zo: Cy/Cy — Sy with z4(eCy) = (0,—1) and z;,: Cy/Cy — S; with z,(eC3) = (0,1).
Because o and x; are really just picking one point, we will just write z; for z;(eC?).
The two are not isomorphic, as a morphism between the two would require a path

in (S1% = {zy, z,} between z, and z;.
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Since C; and {e} are the only subgroups of Cs, it follows that all objects in I1S"
are either zy,z; or isomorphic to z,. Further, since there are no G-maps from
C3/C;y to Cy/e, there are no morphisms from z or z; to z.. So they together with
the morphisms between them form a skeleton of the following form (omitting the

id-arrows at the z;):

pl(T> ) | pl(e> )
|
o T |
|

\ / z.(T) z.(e)

.. \ |
@) \ |
\ . |

po(T,°) oS ~ | Po(e; )

To find the morphisms from z, to z;, 7 € {0, 1}, note that the quotient p: Cy — C5/C,
is the only Cy-map from C; to Cy/C,. Further, we fix the morphisms (p, [p;]) such
that pi(e,-) are the paths from z.(e) to z; as in the picture. Then each path up
to path homotopy from z,(e) to z; is given by pre-composing p;(e, -) with a loop
in m(S*,z.(e)) and each of those composed paths defines a morphism from z,
to z;. This turns I1S*!(z,,z;) into a right m (S!, z,(e))-module, and we write
nst(z,, x;) =~ Z{p;}.
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Z(7)

To find the automorphisms of z., we fix the morphisms (e, [a]) and (7, [t]) defined
by the loop a(e,-) at z,(e) which generates (S, z.(e)) and the path t(e,-) from
z,(e) to z,(7) as in the picture. Then by looking at the picture we find the relations
(1,[t]) o (7, [t]) = id and (7, [t]) o (e, [a]) o (7, [t]) = (e, [a])~!. We abuse notation and
write t? = id and tat = a~! for short. Note that it suffices to check the relations
for the path starting at z.(e), the one starting at z,(7) is fully determined and
follows the same relations. Formally one can calculate e.g. ((7,[t]) o (7,[t])) =
(77, [t(r xid) xt]) = (e, [t "' % t]) = (e, [cz.]) where t~! and c,, are defined by ¢~ (e, -)
being the reverse path from t(e,-) and c,, (e,-) being the constant path at z.(e).
So we get that I1S"!(z,,z,) =< t,a|t? = id, tat = a~' >= Z{a} x Z{t}/2 is the

non-trivial semidirect product of Z/2 and Z.

Putting everything together we get the following skeleton of I1S%:!:

To T

AN /

Z{po} Z{p1}

N/

Ly

O

Z{a} % Z{t}/2
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Example 1.13 (Trivial path connected G-space (Example 2.12 in [BLM*24])). Let
B be a path-connected G-space with trivial G-action. Then for every subgroup H of
G the H-fixed points are the whole space B = i*B and especially path-connected.
So as in the previous example we get that a skeleton of IIB has one object for each
quotient G/H. They could be described as follows: Fix any object z,: G/G — B,
and for each subgroup H define the composition zy: G/H 5@ /G =5 B, where p

is the quotient.

For each choice of G-map a: G/H — G/K and each choice of [p] € m1(i:B, z.(e))
one gets a unique morphism (o, [wy]) € IB(zy, zk) where wy(eH, ) = p. These
are already all morphisms in IIB(zy,zk), so if O(G/H,G/K) denotes the set of
G-maps from G/H to G/K, then I1B(zy,z) is in bijection to O(G/H,G/K) X
m(i:B, z.(e)).

Especially for G/e there is a group isomorphism I1B(z,, z.) = G x m (it B, z.(€)).

So for G = (5 one obtains the following skeleton of I1B:

w1 (i B,za (e))

m (i:B,z*(e»T

Coxmi(iiB,z«(€))

1.2 Closed surfaces

By a closed surface we mean a compact surface without boundary. There is a
classical result stating that all connected closed surfaces are either homeomorphic to
the sphere, a connected sum of tori or a connected sum of projective planes. This
result relies on the fact, that every closed surface can be triangulated. Its history
and various proofs can be looked up in [GX13]. In this section we will give the
classification without proof and repeat some known facts and intuitions about the
closed surfaces which we will need later.

Definition 1.14 (connected sum). Let My, M be connected closed surfaces, D?
the closed 2-disk with boundary S* and let h;: D?> — M;, i = 1,2 be two embeddings.
Then the connected sum of M, and M, is denoted by M,# M, and given by removing

the interiors of the images of the disk and gluing along their boundaries:

Ml#MQ = (Ml - h1 (1ntD2)) Uf (M2 — hz(lntD2))
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where f: hy(S') = ha(SY) is the homeomorphism haohy' restricted to Si.

Remark 1.15. This construction does not depend on the choice of h; and h, in the
sense, that all resulting connected sums are homeomorphic.

Example 1.16. Let’s look at Ty :== T#T, the connected sum of two tori. The 3-
dimensional visualization can look something like in the pictures, creating something

like a figure 8. The right picture also shows a nice set of generators of m(T53).

a X,
Figure 8

Remark 1.17. Because every closed surface can be triangulated, one can turn it
into a homeomorphic polygon with pairwise identified edges:

Let Ay,..., A, be the triangles in a triangulation of a closed surface M. W.l.o.g the
ordering is such that for all 7 € {2,...,n} U;j«;A; and A; share at least one edge E;.
Define F,, = Ay Ug, Ay Ug, - - Ug, A,. Then F,, is homeomorphic to the disk D?
and can be thought of as a (n + 2)-gon. M is obtained from F,, by identifying its
edges pairwise in the way given by the triangulation.

Example 1.18. Let’s look at T, = T#T again, but in the setting of the tori viewed
as squares with identified edges. A convenient way to think about the process of
taking the connected sum is the following: In both squares, cut out the inside of a
loop starting at one of the corners of the square. Then again on both squares, split
the start- and endpoint of the loop (this is okay as they will still be identified by the
edge identifications) and straighten out the loop, creating a polygon with 5 edges.
Now glue the 5-gons together at the border of the loop, creating the typical 8-gon
representing 75. See Figure 1.1

Example 1.19. The projective plane N can be understood as a 2-gon with the
identified arrows forming a loop. Then N, := N#N is represented by a 4-gon which
turns out to be the Klein bottle.

Remark 1.20. This construction works for any two closed surfaces. Especially we
get that the connected sum of g many tori 7}, is represented by a 4g-gon constructed
by iteratively taking the connected sum, and the connected sum of g many projective

planes N, is represented by a 2g-gon.



1.2. CLOSED SURFACES

by

T 4
O

by

by
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Note that for the order and direction of the identified arrows it does make a difference
at which of the corners of the two polygons one cuts out the loop. So there are
a bunch of different 4g-gons all representing 7,. For calculating the equivariant
fundamental groupoid it is important to choose a representation which fits nicely
with the group action. E.g. the representation from Example 1.18 fits with the choice
of generators in Example 1.16 and is well suited for calculating the fundamental
groupoid HTzrflﬁ, where T;flﬂ is T, with reflection along the glued circle c.

Remark 1.21. Working with the polygon representation of closed surfaces, one can
find different homeomorphisms between polygons with different boundary words.
This is one of the main ideas for proving the classification of closed surfaces.
Theorem 1.22 (Classification of closed surfaces). Every connected closed surface is

homeomorphic to one of the following:
e the sphere, denoted by S*
e a connected sum of g > 1 many tori, denoted by T,
e a connected sum of g > 1 many real projective planes, denoted by N,.

We will need the fundamental groups of all closed surfaces. These can be calculated
with the Seifert-Van Kampen theorem, which we will revise here.

Definition 1.23 (presentation of a group). Let S be a set and let F(S) denote the free
group on S. Further, let R be a subset of F(S), i.e. a set of words on S, and N the
smallest normal subgroup of F(S) with R C N. Then we define < S|R >:= F(S)/N.
We say that a group G has presentation < S|R > if G =< S|R >.

Remark 1.24. Every group has a presentation. Often we will write relations in the
form wy = wy where w; and wy are words on S, meaning w, lw, € R.

Theorem 1.25 (free product with amalgamation). Let A,G,H be groups and
¢p:A— G, : A— H group homomorphisms. Further, choose presentations
A=< S4|Rs >, G=<Sg|Rg > and H =< Sy|Ry >.

Then the pushout of (¢,) in the category of groups, denoted by G x4 H and called
free product with amalgamation, is given by G x4 H =< SgU Sy|Rc URy UR >
where R contains the relations ¢(a) = 1(a) for all a € Sy.

Now we can state the Seifert-Van Kampen theorem:

Theorem 1.26 (Seifert-Van Kampen [Kam|). Let X be a topological space and
U,V C X open and path-connected with X = U UV and U NV path-connected and
non-empty. Choose the base point of fundamental groups as xo € U NV and let
w:UNV =>U,iv: VNU -V, ju:U— X, jy =Y be inclusions. Then k in
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the following pushout diagram is an isomorphism:

m(U) JU

Now we can calculate the fundamental groups of closed surfaces.

Theorem 1.27. Let M be a closed surface. Let M be represented by a 2n-gon with
boundary word W in the edge names (a;)i<,. Then the fundamental group of M is
m(M) =< (ai)i<n|W = id >.

Proof. Cover M by an open disk U in the interior of the polygon and V = M — {u}
where u € U. Then U is contractible and m(U) = {e}. UNV = U \ {u} is as
punctured disk homotopy equivalent to S* and therefore m((U NV) & Z. V is
homotopy equivalent to the boundary of the 2n-gon. After the identifications the
boundary is homeomorphic to |/, S*, the wedge sum of n many S*. So m (V) =<
(@i)icn| >= *,Z

The group homomorphism induced by the inclusion U NV — U is trivial while the
group homomorphism induced by the inclusion UNV — V is given by Z =< g| >—
*,Z =< (@;)i<n| >, g+ W. Intuitively the generator g is walking around u once,

it becomes walking around the boundary once.

So by Seifert-van-Kampen we get (M) = 71 (U) *5,wav) m1(V) =< (@;)i<a| W =
id >. O
Corollary 1.28. The fundamental group of T, is

m1(Ty) =< (as)1<i<y, (bi)1<isglarbray by - - anbpay bt >

and the fundamental group of N, is

m (Ng) &L (ai)15i59|a1a1 c Ay >

1.3 Classification of (Cy-surfaces

Definition 1.29 (Cy-surface). By a Cy-surface we mean a Cy-space B, such that

the the underlying topological space i;B is a connected closed surface.
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ox

Figure 1.2: Free involutions on 7, and T3 [Dugl6, 2.7]

Cy-surfaces are fully classified in [Dugl6]. We won’t repeat the proof of the classifi-
cation here as this would exceed the scope of the thesis, but rather introduce the
necessary concepts and notations to understand the classification of Cs-actions on
orientable surfaces. The classification of Cs-actions on non-orientable surfaces is
more involved and we won’t state it here. This whole chapter is just copying and

adjusting the relevant parts from [Dugl6].

Let’s first construct the free actions of C; on T, as in [Dugl6, 2.7]. Let T, be
embedded in R? as a straight chain of connected tori as in Figure 1.2, with the
"center" of the torus at the origin. Then the antipodal map x — —x preserves the
torus and is an involution. When g is odd the origin is inside the central hole of T,
and rotation by 180 degrees through the z-axis gives another involution. For 75 and
T; these are visualized in Figure 1.2.

These Cp-surfaces are denoted by T:* and T,°* respectively, and are the only free
involutions on T, [Dugl6, Theorem 4.1].

Now for involutions with fixed points, consider the constructions of the spit action,

the reflection action and the anti action [Dugl6, 5.1]:

For 0 <7 < 4 let Tgsf,’.“ be the Cy-space as indicated in Figure 1.3. The action is 180
degree rotation around the dotted axis. Note that there is an isolated fixed point at
each intersection of T, with the axis of rotation. Further, the axis passes through
g — 2r doughnut holes. This gives a total of F' = 2 4 2g — 4r fixed points. Often it
is useful to remember the number of fixed points in the notation, so we also write
Tgspit [F] = T;‘;i(tp) where r(F) = W for the spit action on T, with F' isolated
fixed points.
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g — 2r holes

r holes

Figure 1.3: the spit, T2 [Dugl6, 5.1]

? g!T ?

Figure 1.4: the reflection, T "

v fgro

___________

/

[Dugl6, 5.1]

21
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Tanti [2‘ 3]

Figure 1.5: antipodal action, T*"[2, 3], [Dugl6, 5.1]

Similarly for 0 < r < ¢ let T;,erﬂ be the Cs-space as indicated in Figure 1.4. The
action here is reflection along the zy plane indicated in blue. Note that there are
fixed circles wherever T}, intersects with the plane of reflection. The plane passes
through g — 2r holes, so there are C' = g — 2r + 1 fixed circles. Again, sometimes
we write T3*1[C] := r(C) where 7(C) = 1—+92_—C for the reflection on T, with C' many

fixed circles.

Now let T*"i[g, 7] denote the Cy-space which can be constructed as follows: Start
with Tga““, i.e. T, with the antipodal action. Then cut out » many disjoint open
disks which are also disjoint with all their images under the involution, and cut out
the image disks as well. Finally, identify all points on the boundary of a cut disk

with their images under the antipodal action (see Figure 1.5).

This creates r many fixed circles, and the underlying space is i (T [g, 7]) = Ty
One can see that the 72" spaces are different from the 77" spaces by realizing that
for the T spaces the fixed set doesn’t separate the space, while for the 7" spaces
it does.

Now we can state the classification of Cy-actions on orientable surfaces.
Theorem 1.30 (Classification of Cy-actions on orientable surfaces (Theorem 5.7
in [Dugl6|)). For g > 0, up to equivariant homeomorphism there are exactly 4g + 2

involutions on T, (here Ty = S?). These give rise to the following C,-surfaces:
(i) The 2+ [%] orientation preserving actions, namely
e The trivial action

o T for 0 < r < §, or equivalently, Ty [F] for 2 < F < 2+ 2g and

F =2+ 2g mod 4

o T3° when g is odd
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(it) The 2+ g+ | %] orientation-reversing actions, namely

o T for 0 < r < §, or equivalently T;*"[C] for 1 < C < g+ 1 and

C=g+1 mod?2

o T2y g—u] foru<0<g

1.4 The Equivariant fundamental groupoid of Cs-

surfaces

Theorem 1.31. Let B be a Cy-surface with non-trivial action. Further, fix an
object z, in IIB of the form Cy/e — B and a path t from z*(e) to z.(r). Let

.....

.....

and I1B has a skeleton of the following form, where C' is the number of fixed czrcles
and F is the number of fized points:

7r1(Sl) 1r1(51)

Tco+1 To+F

\\\ e

m(izB) - w1 (ifB) m(igB) - m(ifB)

HB(:B*yx*)E(tv([ai])lwymlB)
Further, there is a short exact sequence

1 —— m (2B, z,(e)) —— NB(z,,z,) —— C, > 1

where i: m(i*B, z.(e)) — [IB(z,, z.) with ¢([a]) = (e, [v,]) where v,(e,-) = a, and p
is the quotient p: I1B(zy, z.) — I B(zy, z.)/i(m(i:B)) = Cy sending (a, [w]) — a.

Proof. Let B be a Cy-surface with non-trivial action. Since we assume connectedness,
all objects in I1B of the form Cy/e — B are isomorphic, and therefore a skeleton of
[IB contains only one of them. We will always call this one x.. Further, the skeleton
has one object of the form C,/C, — B for each connected component of (B)®2, the
fixed points of B. We will call these objects z;.
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Depending on if the connected component is a fixed point or a fixed circle it has
either only the trivial automorphism or its automorphism group is isomorphic to
™ (S 1) = Z.

Further, there exist morphisms from z, to the z;. Each set of morphisms I1B(z,, z;)

is in bijection to (i B), which can be seen as follows:

Every element (p, [w]) € I1B(z,, ;) corresponds one to one to a path homotopy
class of paths from z,(e) to z;, as the quotient p: Cy/e — Cy/Cs is the only Cy-map
from Cy/e to Cy/C, and because [w] is fully determined by the path homotopy
class of w(e,-). And for any such path-homotopy class one gets a morphism (p, [w])
by choosing w(e, ) to be in it. Since B is path-connected, we know that the set
of path homotopy classes of paths between two given points is in bijection to the

fundamental group m (i} B, z,).

The only remaining and interesting morphisms in a skeleton of IIB therefore are

those in I1B(z,, z,), i.e. automorphisms of z,.

There is an injective group homomorphism i: m (B, z.(e)) — I[IB(z,,z,) with
#([a]) = (e, [va]) where v,(e,-) = a. This is a group isomorphism to the subgroup
{(, [v]) € IB(z4,z.) : @ = e}, which in turn is the kernel of p: II1B(z,,z,) —

Cy, (a,v)— a. So we get the short exact sequence as in the theorem. Further, we

.....

I1B(z,,z.), then IIB(z,, z,) is generated by {(, [t]), (¢([ai]))ie(1,...,n} }, Which yields

the presentation of IIB(z.,z,) as in the theorem.
Putting everything together we get the diagram above. O

Remark 1.32. Note that if in the situation of the above theorem we have that
relp contains the relation t* = id, i.e. that (7,[t])*? = id, the map s: C; —
IIB(z4,z.), 7 + (7,[t]) is a group homomorphism with po s = idg,. By a
version of the splitting lemma this yields that I1B(z.,z.) is a semidirect product
m (it B, z.(e)) 1, Cy where p: Cy — Aut(m (B, z.(e))) is given by ¢(7)([a]) =
i ((r, [EDi([al) (7, [£]))-

If on the other hand we he have that IIB(z,,z.) = m(i{B, z.(e)) %, C; for some
@, then it follows by the splitting lemma that there exists a group homomorphism
s : Cy — [1B(z,,x,) with po s =id. This implies that s(7)? = s(72) = id, i.e. we
get the existence of the morphism (7, [t]) = s(7) with (7, [t])? = id.

Theorem 1.33. Let B be a Cy-surface. Then I1B(z,,z.) is a semidirect product
m1(15 B, z.(€)) ¥, Cz if and only if B has fized points or B = SZ.
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Proof. In case the action on B is trivial, B has fixed points and II1B(z,,z.) =
Cy x m (it B, z.(e)) by 1.13.

In case the action on B is non-trivial, the theorem and the remark above hold. By
the remark we get that IIB(z.,,) is a semidirect product (i} B, z.(e)) %, Cy if
and only if we have (7, [t])? = id for some morphism (7, [t]) € I1B(z, z.).

First assume that B has a fixed point zo. Then z, and ¢ can be chosen such
that z.(e) = z,(7) = =z, and that ¢ = ¢,, is the constant path at z,. Then
(1, [t])? = (1,[cz))? = (e, [cs,)) = id € IB(z,,x.), so by the remark we get that
[IB(z,,z,) is a semidirect product (i} B, z.(e)) %, Cs.

For the case B = S? Theorem 2.1 gives us I15?(z,,z.) & Cy = Cy x m1(S?).

For the other direction assume that I1B(z,, z.) is a semidirect product my (¢} B, z.(e)) X,
C,. Then there exists a morphism with (7, [t])? = id = (e, [c,,]) where ¢, (e, -) is the

constant path at z.(e).

Note that by /013 = S1 we get that ¢(7 x id) xt: C2 x I — B factors through
Cy x S — B. Further, let i: Cy x S* — C, x D? be the inclusion of the S'’s
to the boundaries of the respective disks. Then, since ¢(7 x id) x ¢ is equivariant

path-homotopic to the constant paths c,,, we know that it extends to an equivariant
map h: Cy X D* — B such that hoi = t(r x id) x ¢:

02 % Sl t('rxid)*tB

Cz X D2
(t(r x id) * t)(e, -) is the path t(e,-) concatenated with its image ¢(7,-). The same is
true with e and 7 flipped. So by choosing a uniform identification of I/o1} = S)
we get for all x € S* that (¢(7 x id) x t)(e,z) = (¢(7 x id) % ¢)(7, —z). Identifying
(e,x) ~ (1,—x), we get that t(7 x id) xt: Cy x S' — B factors through ¢ : S! — B,
where S! is S' with the antipodal action.

Therefore we can identify the boundaries of the two disks in Cy x D? such that the

boundary becomes S!, obtaining a space isomorphic to S? via

fi Cox D*/(caoynir—2) vocon = So (e, (z1,22)) > (71, T2,4/1 — 22 — 22)

where {e} x D? becomes the northern hemisphere and {7} x (—D?) becomes the
southern hemisphere. Then h factors through h: S? — B. Let i: S} — S? be the

inclusion at the equator, then:
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]

|+

Further, let p: E — B be a universal cover of ¢;B. For now let’s treat the case
i*B ¢ {S% N}, i.e. the underlying space is neither the sphere S? nor the projective
plane N. Then either i:B € {T, N>} is the torus 7" or the Klein bottle N3, in which
case E = R? is a universal cover of i B, or E = H?(= R?) the hyperbolic plane is

the universal cover (see Remark 1.34 below).

Since 7, (S%) = {e}, we get a lift (i*h)": S — E of izh by the lifting lemma:

. E
(z;)'/*lp
52 < p

Then by the Borsuk-Ulam theorem there exists an z € S2 such that (i*h)(z) =
(i*h)'(—z). It follows i*h(z) = i*h(—z). This means, that i*h(z) is a fixed point of
B: 7(ith(z)) = ith(r(z)) = ith(—z) = ith(z).

For the case it B = S? we check that the only Cy-sphere without fixed points is 52
(see Theorem 2.1).

For the case iB = N is the projective plane, there are just two possibilities for B
[Dug16], namely N with the trivial action and the space obtained from S%! or §%2
(see Section 2.1) by identifying antipodal points. Both have fixed points. O

Remark 1.34. The result, that for g > 1 R? is a universal covering of T, and N1,
follows from the Cartan-Hadamard Theorem [Car| in Riemannian geometry, which
uses the non-positive curvature of these manifolds. A more explicit way to see how
these coverings work is to notice that in the same way R? can be tiled by squares,
H? can be tiled by regular 4g-gons such that 4g-many edges meet at a corner for
g > 2 (Tiling with Schlifi-symbol {4g,4g}). So Ty is a suitable quotient of H? and
H? their universal cover [UCS]. Since 7T} is a two-sheeted covering of Ny, we also
get that H? is a universal cover of N,y for g > 2.

Remark 1.35. The essential and potentially difficult part of computing the equiv-
ariant fundamental groupoid I1B of a Cy-surface is to make suitable choices for z,
and the [a;] generating 7 (i*B, z.(e)), such that the relations in relp take a nice
form and can be found easily. If B has fixed points, choosing z, as one of those is

usually a good choice.
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The group I1B(z., z,) can be understood to capture how the involution acts on the

fundamental group of i} B.

There remain the following open questions:

Question 1.36. Is a Cy-surface uniquely determined by its equivariant fundamental
groupoid and the fundamental groupoid of its underlying surface?

Question 1.37. Let X be a closed surface. Do all possible semidirect products of
the form m(X) x, Cy occur as I1B(z,,x,) of some Cy-surface B with i:B = X ?

We will answer these two questions in the cases i!B = X = S? and i*!B=X =T in
Chapter 2.
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Chapter 2

Calculations

2.1 Sphere

Classification of Cy-actions on orientable surfaces (see Theorem [1.30]) there are four
involutions on Ty = S2. These are the trivial action, the reflection along a plane, the
half rotation about an axis, and the antipodal action. The corresponding C,-surfaces
(Cy-spheres) are denoted by $20 := Tgrivial | §21 .— Trefl[C = 1], §22 := TP [F = 2
and S? := T, They can be thought of as reflections of S? at 0,1,2 or 3 of the

coordinate system planes.

Let B denote any Cy-sphere. Recall the short exact sequence from Theorem 1.31:

1 —— m(i*B,z.(e)) —— IB(z,,z,) —2— C, > 1

Since i* B = S? is simply connected, the exact sequence simplifies to

1 —— [B(zs, x4) > C > 1
which yields I1B(z,, z.) = C,.

So together with the information about the fixed set of these Cy-surfaces, Theorem
1.30 and Example 1.13, we get the following skeletons of equivariant fundamental
groupoids of Cs-spheres:

Theorem 2.1 (The equivariant fundamental groupoids of Cs-spheres). The Cs-
spheres have equivariant fundamental groupoids with the following skeletons, i.p. the

equivariant fundamental groupoid distinguishes them:
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)

iy Zo

1529 (trivial aciton): T [1S%! (reflection): T
Ty Tk

Cz C2

1522 (rotation): \ / I1S? (antipodal action): =,

"y 2

2.2 Torus

There are 6 Cs-tori by Theorem 1.30. These are:
o Tirvial 'the trivial action

T:P*[F = 4], the rotation with 4 fixed points

T7°, the free rotation

Tref[C = 2], the reflection

T2™[1, 0], the antipodal action
e T204[() 1], the toilet paper roll

We will calculate their equivariant fundamental groupoids with the help of Theorem
1.31 and switching back and forth between the embedded representation of the torus
and the representation as square with identified edges. In the case of actions with
fixed points we also want to look at the possible representation of IIB(z,,z.) as a

semidirect product.

Let B be any Cy-torus. Then we get that m(iB) = m(T) = Z X Z =<
a,blaba"'b~! = id >. Therefore, [I1B(z.,z.) =< t,a,blaba™b~! = id, tat =?,tht =
?,t2 =7 >. The main challenge will be to find out what the question marks are. The

rest of the equivariant fundamental groupoid is already given by the fixed set.

We will always denote by a(e,-) the loop at z.(e) going around the hole of the torus
and by b(e, -) the loop at z,(e) going through the hole. Note that this distinction

only makes sense when embedding the torus in R®. In the intuition of glueing the
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edges of the torus square, the edge pair which is glued first becomes the loop going
around the hole.

We will always paint a in green and b in red. Further, we paint the fixed set in blue

and z, in pink.

2.2.1 The trivial action, 7}mvial

Here we have that every point is a fixed point and ¢? = id, tat = a and tbt = b, i.e.
everything commutes with ¢. By these considerations and also directly by Example

1.13, we get the following skeleton of the fundamental groupoid of 7rivial;

T (T)

()
1
™ (T)T
T
)

Coxm1(T)

Here N7Vl (z, 2,) 2 Cy x Z X Z = m(T) x, Cy is the trivial semidirect product,
1 0

where ¢: Cy — Aut(m(T)), 7 — (O 1) acts via the unit matrix on Z x Z &

T (T7 IL‘*(G)).

Thinking of the Torus as a square, i.e. as T = (R/Z)?, the identity map of R?
(represented by the identity matrix) factors through Z, which turns it into the trivial

action on the torus.

The last two paragraphs might seem redundant, but it is worth noting to give the
full picture. It seems that there is a one to one correspondence between self-inverse
linear maps in R? which factor through to the torus (i.e. similarity classes of self

inverse integer matrices) and involutions with fixed points on the torus.

2.2.2 The reflection, T7![C = 2]

We choose z, € II(Tt4[C = 2]) such that z,(e) = z,(7) is on one of the fixed circles

as in Figure 2.1, and we choose ¢ such that t(e) is the constant path at z.(e).

The C,-action in the square representation of Tr*![C = 2] is given by the reflection
along any of the fixed lines (see Figure 2.3). The involution on T' = (R/Z)? is given
-1 0

by the matrix )
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Figure 2.1: Tr[C = 2] in R3

One can see that the reflection tat of a is just a=!, and that b is fixed, i.e. tht = b.
Also t? = id. This yields II(T78[C = 2])(z,,z.) =< t,a,blaba"b"! = id, tat =
a~l,tht = b,t? = id >, So we get a skeleton of II(TT*[C = 2]) as given in Figure 2.2.

One can identify Tr°1[C' = 2] with Sb! x S1, the space from Example 1.12 times
S1. This is not only visible in Figure 2.1 and Figure 2.3, but also reflects in the
equivariant fundamental groupoid, as II(TT*[C' = 2]) = (I1S™!) x I1(S?). Especially,
(TFC = 2]) (x4, 7.) =< t,a,blaba™'b7! = id,tat = a7 !, tht = b, 2 = id >
(Z{a} x Z/2{t}) x Z{b} = T1S"} (., z.) x ILS*(z.(e), . (€)).

Also II(TT[C = 2]) (24, x.) = m(T) %, C» is a semidirect product, where ¢: Co —
1 0

Aut(m (T)), 7 — (‘0 L
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e

m1(S1)

()

I
S
w1 (T)
AN

m1(S1)

()

T2
Py
m1(T)
7

a(e)|

a(r)

\ 4

\ 4

Ty

O

<t,a,blaba~ b~ 1=id,t?=id,tat=a"! tht=b>

L

Figure 2.2: II(TT4[C = 2]) Figure 2.3: Tr%[C' = 2]

2.2.3 The spit, T}?'[F = 4]
We choose z, € II(T;P"[F = 4]) as a fixed point like in Figure 2.4 and t constant.

The C,-action in the square representation of T;”[F = 4] is given by a 180 degree
rotation around any of the fixed points (see Figure 2.6) and the involution on

0

—1
T = (R/Z)? is given by the matrix ( 0 .

One can see that the image tat of a under the rotation is a=! and the image of b is
b~!. Therefore, we get a skeleton of II(T7P"*[F = 4]) as given in Figure 2.5.

z Hp) T3 Ty
S A e
m1(T) 71 (T) =1 (T) m1(T)
N
Ty

)

<t,a,blaba= b~ 1=id,t?=id,tat=a "1, tht=b"1>

Figure 2.6: T{P'[F = 4]

Figure 2.5: II(TP*[F = 4])

The rotation in Figure 2.4 can be understood as reflecting along two planes, one

containing a and one containing b.
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Figure 2.4: T;?"[F = 4] in R®

Putting everything together, II(T;P"[F = 4])(z.,z.) = m(T) x, C; is a semidirect

product, where ¢: Cy — Aut(m (7)), (—01 01 .

2.2.4 The antipodal action, 731, ()

Choose z,(e) on the outer perimeter. Then z,(7) is opposite of z,(e), and a(e) goes
around the outer perimeter once (see Figure 2.7).

Note that a(7) also goes around the outer perimeter once, in the same direction
as a(e), but rotated by 180° degrees, starting from z,(7). Choose t(e) as the path
segment of a(e) from z.(e) to z,(7). Then ¢(7) is the path segment of a(e) from

z«(7) to z.(e).

Further, note that b(7) is in the opposite direction as b(e), and rotated 180° degrees
around the torus, starting at z.(7).

The C,-action on the square representation of T*"[1,0] (see Figure 2.9) is given
by translating by half the square in the a direction, followed by mirroring the b
direction along the horizontal middle line or a.

As relations we get t2 = a, tat = a?, tht = b~'a, and a skeleton of II(T"[1,0]) is

given by Figure 2.8
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Figure 2.7: T%"i[1,0] in R?

T

-

<t,a,blaba~1b~1=id,t?*=a,tat=a? tht=ab~1>

Figure 2.8: II(T"[1,0]) Figure 2.9: T20[1, 0]
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Note that since 7%"[1, 0] has no fixed points II(T2™[1, 0])(zs, z.) % m(T) X, Cs is

not a semidirect product of Cy and (7).

However, it is possible to simplify the description of II(77"[1,0])(z., ). First
notice, that 2 = a, so we can get rid of a as a generator. Then the relation tat = a?
becomes obsolete, the relation aba='b~! = id becomes t?bt2b~! = id, and the
relation tbt = ab! turns into tbt = t2b~! < bt = th~ L.

So far we have II(T?[1,0])(z.,z.) =< t,b[t?b = bt?,bt = tb~' >. Notice that
the second relation implies the first, as bt = tb™! & t = b~ 'b~! & tb = b=t and
therefore t2b = tb~'t = bt

So now we have I1(T?"[1,0])(z,,z.) =< t,b|bt = tb~! >, which is the non-trivial
semidirect product Z x Z and the fundamental group of the Klein bottle. Taking a
step back from the calculation and looking at a, b, and ¢ in the pictures of T2™[1, 0],
this also makes intuitive sense as the quotient space T7™[1,0]/C} is the Klein Bottle:
Note that the quotient space looks like half the torus square, which is the rectangle
bounded by t and b with identifications bt = tb~'.

2.2.5 The free rotation, 77°

Again, choose z.(e) on the outer perimeter. Then z.(7) is opposite of z.(e), and
a(e) goes around the outer perimeter once (see Figure 2.10).

As with T%[1, 0], a(7) is in the same direction as a(e) and we choose t(e) to be the
first half of a(e), so ¢(7) is the second half.

Unlike in the previous Cy-Torus, here b(7) is in the same direction as b(e).

The Cs-action on the square representation of 77° is given by translation by half
a square in the a direction (see Figure 2.12). As relations we get t? = a, tat = a?,
tbt = ab, and a skeleton of II(77°") is given by Figure 2.11:

Note that since T7°* has no fixed points, II(77%")(z.,z.) & m(T) %, C; is not a
semidirect product of Cy and (7).

However, there is again a simplified way to write down II(77°")(z,, z.). Because of
t2 = a, we can get rid of a as a generator again. The relation tat = a® becomes
trivial, the relation aba='b~! = id becomes t2bt~2b~! = id, and the relation tbt = ab

turns into tbt = t2b < bt = tb.
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Figure 2.10: 77°" in R?

T

O

<t,a,blaba~ b~ 1=id,t?=a,tat=a? tht=ab>

Figure 2.11: TI(Tr)

Figure 2.12: Trot
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So far we have that II(T7°)(z., z.) =< t,b|t?b = bt* bt = tb >. Again, the first
relation becomes obsolete by the second, and we obtain that II(7T7)(z,,z,) =<
t,b|bt = tb >= Z x Z = m(T). Again this also makes intuitive sense in both pictures,
as the quotient space T7°"/C} is the torus, of which ¢ and b generate its fundamental

group.

Especially one gets that I1(T7)(z,,z,) 2 I(T?"[1,0])(.,z.), so the skeletons
of TI(T7°') and II(T%"[1,0]) do not agree and therefore they are not equivalent

categories.

2.2.6 The toilet paper roll, 72"%(0, 1]

Recall the general construction of 72"[. .]. In this special case, we start with S2,
the sphere with the antipodal action, then cut out an open disk which is disjoint
from its image under the antipodal action and also cut out the image disk. Then we

identify the boundaries of the disks, such that it becomes a fixed circle.

The sphere with antipodal disks cut out is homeomorphic to the cylinder, and also
the action is still antipodal on the cylinder. Glueing the boundaries creates a torus.
We choose z, on the boundary of the cylinder which is fixed, ¢ constant, b(e) to go

around the boundary of the cylinder once, and a(e) as in Figure 2.13.

The Cy-action on the square representation of 7*"[0,1] is best understood by
skewing the square, in which case the Cy-action is given by reflection along b followed
by a half-shift in the b-direction. In an unscewed square, i.e. in the T = (R/Z)?
picture, the action is a skew followed by a reflection. It is given by the matrix

-1 0
1 1)
We get the identifications t? = id, tbt = b, tat = ba™!, which determine the following
skeleton of the toilet paper roll:

Since the toilet paper roll has fixed points, II(7*"[0, 1]) (., z.) = 1 (T) X, C2 is a
0

semidirect product, and ¢: Cy — Aut(m (7)), 7 — ) )
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Figure 2.13: T*™[0,1] in R?

m1(S1)

()

T
A
™ (T)
1
Ty

O

<t,a,blaba~ b~ =id t?=id,tat=ba ! tht=b>

Figure 2.14: TI(T™[0, 1)) Figure 2.15: T20, 1]
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2.2.7 Conclusions for all C5-Tori

Let’s try to answer the open questions 1.36 and 1.37 for the torus. They both turn
out to be true:
Theorem 2.2. Let B be a Cy-torus. Then IIB determines which one.

Proof. All skeletons of equivariant fundamental groupoids of Ch-tori above are

different from each other. O

Theorem 2.3. Let H be a semidirect product of the form H = m(T) %, Cy. Then
there ezists a Cy-torus with I1B(z,,z,.) = H.

Proof. A semidirect product is given by ¢: Cy — Aut(m(T)) = Z**2, which in turn

is determined by ¢(7), which is a 2 x 2 self-inverse integer matrix.

Notice further, that the linear map ¢: R? — R? given by a self-inverse integer matrix
¢(7) factors through to an involution ¢: R?/Z2 — R2/Z?2 on the torus with fixed
point z, := Z? by the universal property of the quotient. Let B be that C,-surface.
The paths a,b along the unit vectors, are generators of m(i:B,z,). Notice that

1
¢(a) is the straight line from the origin to ¢(7) (0> = (90ng1,1> , and ¢(b) is the
P T)2,1

@(T)2,2
These straight lines are path homotopic to the paths along the grid lines, and since

straight line from the origin to ¢(7) (S) = (CP(T)1,2> .

the quotient p: R? — R?/Z? is the universal covering of the torus, we get that
p($(a))] = (@26 i (32, .) and [o(@(5)] = [a=O1op(ohs]

Then MB(z.,z.) =< t,a,blaba™'b™! = id,t? = id,tat = a?D1p#(M21 tht =
a¢(7)1,2b<ﬂ(7)2,2 > Wl(T) X C’z. O

2.3 Free Cy-Klein bottle

Let K = N, be the connected sum of two RP?, known as the Klein-bottle. We will
calculate the equivariant fundamental groupoid of its unique free involution. For a
model of K in R® one can think of the quotient space of the torus with antipodal
action, K = T2"[0,1]/C, (See Section 2.2.4). As square model we take the usual
Klein Bottle square with boundary word aba~'b as in Figure 2.16. Then a (and by
Dugger [Dugl6] the unique) free action on the Klein bottle is a half shift up/down

in direction of b.
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z,(e)

Figure 2.16: K'ree

Let’s denote this Cy-surface by K¢, and choose the t as the first half of b. Then
t2 = b.

One can see that the quotient space K™¢/C, is given by half the square above, with
edge identifications ata't, i.e. K™¢/C, = K is again the Klein bottle. Therefore
we get that [IK™(z,,z,) = m(K) & Z x Z, and [IK™* has the following as a

skeleton:

T

-

ZXZ

This is exactly the same skeleton as for II(7™[0, 1]).

This shows that in general, given an equivariant fundamental groupoid of a surface,
one cannot infer the underlying surface. This is unlike the non-equivariant situation

where the fundamental groupoid differentiates all closed surfaces.

One can ask if given the underlying space or its fundamental groupoid and the
equivariant fundamental groupoid, one can infer the Cy-surface. This is Question
1.36.
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2.4 The T}

Let’s choose the generators of (Tgrfrﬂ) as in Figure 2.17, which shows the front side
of the T, embedded in R?).

X
W QO ) [wn
_
@ fixed
O ) |wy

QO ) |@n

Figure 2.17: T in R®

To understand this picture, it helps to compare it with Figure 1.4. It is the same

picture but the viewing-angle is more from the front and the torus is less smooth.

The purple part is contractible and mapped to itself under the reflection, and
therefore it is possible for us to consider it as one identified fixed point z,. For the
Loops on the left, the dashed loops are the images of the non-dashed loops under

the reflection.

One can immediately see, how the generators belonging to the 2r holes on the
right are mapped onto each other. The difficulty for writing down the relations is
describing the dotted loops as a composition of the generating loops. Also, it is
not at first obvious, what the polygon representation is, and therefore what the
identification of the fundamental group is. For now let’s just accept the polygon
representation in Figure 2.18:

Again we help ourselves by not considering z, as only the corners (i.e. the path start-

and endpoints) but we extend one of the corners by the pink curve as in the picture.
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B & "corners": z, (u,7)
W a
7 :
O fixed e —
Identifications only
within "torus squares"
separated by gray lines Y (u,1)
..... [ I ’I‘ r a T ’I‘ v
l | I’ AT/
| x I X
7/
..... I L : | I —X
I I |
' ! L !
| I
...... VRV, IV'C UK VRS W I\, W
,g—2r—1 ,g—2r
v b ) A (d,1)

Figure 2.18: T;%" as 4g-gon
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The dashed gray lines divide the polygon into connected "torus squares". Each of
those corresponds to the surface around one of the torus holes, and identifications of

the arrows only happens within those.

We first notice that the order in which all the curves intersect matches in Figure
2.17 and Figure 2.18, which supports the claim, that the polygon representation is
valid. The involution is hard to grasp in the polygon representation, however it still

is something like "reflection along the fixed set".

The identification of the fundamental group is given by walking around the boundary

of it once.
For talking about the relations, we need to introduce variable names for the loops.

We first assign labels to the different types of holes. We call the ones intersecting the
reflection plane by p, those above by u (up), and those below by d (down). Now we
enumerate the holes on the reflection plane from left to right by (p, 1) to (p,g — 2r).
For the holes above the reflection line we choose the labels (u, 1),..., (u,r) from the
middle to the outside, and for the holes below we choose the labels (d, 1),...,(d, ),

also from the middle to the outside.

Then denote all the green loops by a,..), and all the red loops by b(..). Regarded as
objects of IIT}", we get that a(,,(7) are the dashed green loops and b, (7) are
the dashed red loops. The red loops always go through the hole, and the green
loops always go around the hole. Let’s also define the loops a’(,’,) = b(".’l.)a(.,.)b(.,.).
In the polygon-representation these correspond to the 3 connected edges in each
area corresponding to one of the torus holes. In the embedded representation they
correspond to loops in the same direction as the corresponding a, but on the back
side. The conjugation by the corresponding b "pulls a through the hole to the back

side". Last, choose (¢, 7) such that ¢ is the constant paths at z,.

With this intuition, we can now understand all identifications in HT;;ﬁ(x*, x,) coming

from the loops along the reflection plane.

First notice that for the right most hole on the reflection plane we have ta, 4_or)t =

a(_;g_m. Further notice, that for the second to right hole on the reflection plane,
-1

(p,g—27‘—1)'
start and end segments of the loop are above or below the hole (p,g — 2r) at the

we almost have that ta(, 2,1yt equals a The only difference is if the

right. This difference is exactly given by a(, 42, and therefore ta(, o1yt =

-1 -1
@(p,g—2r)%(p,g—2r—1) M (Pg—27)-
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In general for ta, .t we therefore get

-1 -1 -1
tapit = (a‘(p,g—2r) " 'a(p,i+1))a(p,i) (@pis1) -+ Apg—2r))

For seeing this in the polygon representation, remember that the base point of the
dashed green loops ta(, )t can be moved along the purple line to the corner of the
polygon to which the purple line is connected to. Then notice, that the first half of
the loop is path-homotopic to walking the border segment (a a, g 2r) " Qi +1))a(p 9
while the second half is path-homotopic to the border segment (a(pﬂﬂ) “(pg—2r))-

The red dashed loops tb, .t are a bit harder to imagine as composition in the

embedded picture, so let’s start with the polygon. If we again move the base point of

a loop tb(, i)t along the purple line, we find that the first half of the loop is again path-
-1

(pg-2r) " Ypi+1

(p m the first half, but it could have been put in the second half as well. The second

half is path-homotopic to the border segment b, z)(

So in total we find that

homotop1c to the border segment (a " ))a(pl We choose to include

1” n° a,(;,ll))(a(l’sl) T Qpg—an))-

-1

thp, )t = (a‘(_;:g—2r) T a(_;ii))b(P:i)(a(p,i—l) " 'al(;,ll))(a(p,l) “tA(pg—2r))

An interpretation in the embedded picture is the following: (a(‘pfg_%) a, l)) rep-
resents the loop going around the holes (p,g — 2r),. .., (p,?) anticlockwise on the
front. This loop we compose with the loop b(,:), which is going through the hole
(p,1) in the direction needed for the red dashed loop tb,t. Together, the loop can
be imagined as coming from the purple line above the (p,7)-hole, passing through
it at the left side of it, continuing downwards on the back, around the bottom and

arriving at the bottom purple line in the front.

This loop we now compose with (a '), which is the loop going around

(pi-1) " 1)
the holes (p,7 —1),...,(p, 1) anticlockwise on the back side. The composed loop so
far can now be imagined as a loop around all (p, -)-holes, switching from front to

back in the (p,7)-hole and arriving at the front again on the bottom.

Now we just have to walk around all (p, -)-holes again to only be left with passing

through the (p,4)-hole. This is done by composing with (a,1) - - apg—2r))-

Similarly, one can also try to make sense of the identification of the fundamental

group in the embedded case, which is explicitly given by
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—1 -1
p,g—2r) a'l(p,l))(a’(P:l) e a’(l’ag—2"))
w)) " W) (@) Gu))

(a(_fl) T a’(d,r))(a'l(u,r) s 'a'(u,1))
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Now that we have figured out all identifications, we can give the fundamental

groupoid HT;f,ﬂ:

z Ty—2r+1
N 2
m1(Ty) 71 (Ty)
-~
o
N73ef (2, ,z.)
where

T, (2, ) =<a(p,1), bp1),***  Qpg—2r), Dipig—21);

A1), O(u,1)s "+ 5 Quyr)s Blur)s

a1, by, 5 dr)s bdyr)s

t

t? =id,

ta it = Qu,i), gt = by Vi
taqu,it = a(d,), tbeu,it = b, Vi :
tap,t = (a (plg —or)” (_;:i+1))a(_;:i) (a@,i+1) - Qpg-2r) Vi:

-1
tb(P:i)t = (a (pg—2r) " " a’(p,i))b(l’:i)

(a(pz )"’ a’,(;,ll))(a’(p,l)  Qpg—2r)) Vi :

1
(a(pg 2r) (p,1))(a(p,1) "t Q(pg-2r))
(a’(ull) e a’(u r))(a’(u r) e a(usl))
(a (dll) g, r))(a’(u r)° a’,(u,l)) >

—_ = =

IANIN A

IAN IN A

Q = =
|

DN

3

1<i1<g—2rn,



46

Bibliography

[BLM*24] BEAUDRY, Agnés ; LEwis, Chloe ; MAY, Clover ; PAULI, Sabrina ;

[Car]

[Die87]

[Dugl6]

[EqM]
[GX13]

[Jah15]

[Kam)]

[UCS]

TATUM, Elizabeth: A Guide to Equivariant Parametrized Cohomology.
https://arxiv.org/abs/2410.13971. Version: 2024

https://en.wikipedia.org/wiki/Cartan}%E2%80%93Hadamard _

theorem

DIECK, Tammo tom: De Gruyter Stud. Math.. Bd. 8: Transformation
groups. De Gruyter, Berlin, 1987. — ISBN 3-11-009745-1

DUGGER, Daniel: Involutions on surfaces. https://arxiv.org/abs/
1612.08489. Version: 2016

https://en.wikipedia.org/wiki/Equivariant_map

GALLIER, J. ; XU, D.: A Guide to the Classification Theorem for
Compact Surfaces. Springer Berlin Heidelberg, 2013 (Geometry and
Computing). https://books.google.de/books?id=zSBAAAAAQBAJ. —
ISBN 9783642343643

JAHREN, Bjorn: Geometric Structures in Dimension two.
https://www.uio.no/studier/emner/matnat/math/MAT4510/data/

geometric-structures.pdf. Version: 2015

https://en.wikipedia.org/wiki/Seifert%E2%80%93Van_Kampen_

theorem

https://math.stackexchange.com/questions/1741845/

homotopy-groups-of-compact-surfaces



